Data Frames - Basic Operations¶
Here are some of the basic operations we typically perform on top of Pandas Data Frame.
Getting number of records and columns.
Getting data types of the columns.
Replacing
NaN
with some standard values.Dropping a column from the Data Frame.
Getting or updating column names.
Sorting by index or values.
import pandas as pd
Note
Creating Pandas Data Frame using list of dicts.
sals_ld = [
{'id': 1, 'sal': 1500.0},
{'id': 2, 'sal': 2000.0, 'comm': 10.0},
{'id': 3, 'sal': 2200.0, 'active': False}
]
Note
Column names will be inherited automatically using keys from the dict.
sals_df = pd.DataFrame(sals_ld)
sals_df
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | NaN | NaN |
1 | 2 | 2000.0 | 10.0 | NaN |
2 | 3 | 2200.0 | NaN | False |
sals_df['id']
0 1
1 2
2 3
Name: id, dtype: int64
sals_df[['id', 'sal']]
id | sal | |
---|---|---|
0 | 1 | 1500.0 |
1 | 2 | 2000.0 |
2 | 3 | 2200.0 |
sals_df.shape
(3, 4)
sals_df.shape[0]
3
sals_df.count()
id 3
sal 3
comm 1
active 1
dtype: int64
sals_df.count()[:2]
id 3
sal 3
dtype: int64
sals_df.count()['id']
3
sals_df
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | NaN | NaN |
1 | 2 | 2000.0 | 10.0 | NaN |
2 | 3 | 2200.0 | NaN | False |
sals_df.dtypes
id int64
sal float64
comm float64
active object
dtype: object
sals_df.fillna?
Signature:
sals_df.fillna(
value=None,
method=None,
axis=None,
inplace=False,
limit=None,
downcast=None,
) -> Union[_ForwardRef('DataFrame'), NoneType]
Docstring:
Fill NA/NaN values using the specified method.
Parameters
----------
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of values specifying which value to use for
each index (for a Series) or column (for a DataFrame). Values not
in the dict/Series/DataFrame will not be filled. This value cannot
be a list.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use next valid observation to fill gap.
axis : {0 or 'index', 1 or 'columns'}
Axis along which to fill missing values.
inplace : bool, default False
If True, fill in-place. Note: this will modify any
other views on this object (e.g., a no-copy slice for a column in a
DataFrame).
limit : int, default None
If method is specified, this is the maximum number of consecutive
NaN values to forward/backward fill. In other words, if there is
a gap with more than this number of consecutive NaNs, it will only
be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.
downcast : dict, default is None
A dict of item->dtype of what to downcast if possible,
or the string 'infer' which will try to downcast to an appropriate
equal type (e.g. float64 to int64 if possible).
Returns
-------
DataFrame or None
Object with missing values filled or None if ``inplace=True``.
See Also
--------
interpolate : Fill NaN values using interpolation.
reindex : Conform object to new index.
asfreq : Convert TimeSeries to specified frequency.
Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
Replace all NaN elements with 0s.
>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4
We can also propagate non-null values forward or backward.
>>> df.fillna(method='ffill')
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4
Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
2, and 3 respectively.
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4
Only replace the first NaN element.
>>> df.fillna(value=values, limit=1)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4
File: /opt/anaconda3/envs/beakerx/lib/python3.6/site-packages/pandas/core/frame.py
Type: method
sals_df.fillna(0.0)
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | 0.0 | 0 |
1 | 2 | 2000.0 | 10.0 | 0 |
2 | 3 | 2200.0 | 0.0 | False |
sals_df.fillna({'comm': 0.0})
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | 0.0 | NaN |
1 | 2 | 2000.0 | 10.0 | NaN |
2 | 3 | 2200.0 | 0.0 | False |
sals_df.fillna({'comm': 0.0, 'active': True})
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | 0.0 | True |
1 | 2 | 2000.0 | 10.0 | True |
2 | 3 | 2200.0 | 0.0 | False |
Note
Original Data Frame will be untouched, instead a new Data Frame will be created. Original Data Frame still contain NaN
. We typically assign the output of most of the Data Frame functions to another variable or object.
sals_df
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | NaN | NaN |
1 | 2 | 2000.0 | 10.0 | NaN |
2 | 3 | 2200.0 | NaN | False |
sals_df = sals_df.fillna({'comm': 0.0, 'active': True})
sals_df
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | 0.0 | True |
1 | 2 | 2000.0 | 10.0 | True |
2 | 3 | 2200.0 | 0.0 | False |
sals_df.drop?
Signature:
sals_df.drop(
labels=None,
axis=0,
index=None,
columns=None,
level=None,
inplace=False,
errors='raise',
)
Docstring:
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level.
Parameters
----------
labels : single label or list-like
Index or column labels to drop.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index : single label or list-like
Alternative to specifying axis (``labels, axis=0``
is equivalent to ``index=labels``).
columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If False, return a copy. Otherwise, do operation
inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
DataFrame
DataFrame without the removed index or column labels.
Raises
------
KeyError
If any of the labels is not found in the selected axis.
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3, 0.2]])
>>> df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
>>> df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
File: /opt/anaconda3/envs/beakerx/lib/python3.6/site-packages/pandas/core/frame.py
Type: method
sals_df.drop(columns='comm')
id | sal | active | |
---|---|---|---|
0 | 1 | 1500.0 | True |
1 | 2 | 2000.0 | True |
2 | 3 | 2200.0 | False |
Note
We can also drop multiple columns by passing column names as list.
sals_df.drop(columns=['comm', 'active'])
id | sal | |
---|---|---|
0 | 1 | 1500.0 |
1 | 2 | 2000.0 |
2 | 3 | 2200.0 |
sals_df.drop(['comm', 'active'], axis=1)
id | sal | |
---|---|---|
0 | 1 | 1500.0 |
1 | 2 | 2000.0 |
2 | 3 | 2200.0 |
sals_df = sals_df.drop(columns='comm')
sals_df.columns
Index(['id', 'sal', 'active'], dtype='object')
sals_df.columns = ['employee_id', 'salary', 'commission']
sals_df
employee_id | salary | commission | |
---|---|---|---|
0 | 1 | 1500.0 | True |
1 | 2 | 2000.0 | True |
2 | 3 | 2200.0 | False |
sals_df.sort_index?
Signature:
sals_df.sort_index(
axis=0,
level=None,
ascending:bool=True,
inplace:bool=False,
kind:str='quicksort',
na_position:str='last',
sort_remaining:bool=True,
ignore_index:bool=False,
key:Union[Callable[[_ForwardRef('Index')], Union[_ForwardRef('Index'), ~AnyArrayLike]], NoneType]=None,
)
Docstring:
Sort object by labels (along an axis).
Returns a new DataFrame sorted by label if `inplace` argument is
``False``, otherwise updates the original DataFrame and returns None.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis along which to sort. The value 0 identifies the rows,
and 1 identifies the columns.
level : int or level name or list of ints or list of level names
If not None, sort on values in specified index level(s).
ascending : bool or list of bools, default True
Sort ascending vs. descending. When the index is a MultiIndex the
sort direction can be controlled for each level individually.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the end.
Not implemented for MultiIndex.
sort_remaining : bool, default True
If True and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.0.0
key : callable, optional
If not None, apply the key function to the index values
before sorting. This is similar to the `key` argument in the
builtin :meth:`sorted` function, with the notable difference that
this `key` function should be *vectorized*. It should expect an
``Index`` and return an ``Index`` of the same shape. For MultiIndex
inputs, the key is applied *per level*.
.. versionadded:: 1.1.0
Returns
-------
DataFrame
The original DataFrame sorted by the labels.
See Also
--------
Series.sort_index : Sort Series by the index.
DataFrame.sort_values : Sort DataFrame by the value.
Series.sort_values : Sort Series by the value.
Examples
--------
>>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150],
... columns=['A'])
>>> df.sort_index()
A
1 4
29 2
100 1
150 5
234 3
By default, it sorts in ascending order, to sort in descending order,
use ``ascending=False``
>>> df.sort_index(ascending=False)
A
234 3
150 5
100 1
29 2
1 4
A key function can be specified which is applied to the index before
sorting. For a ``MultiIndex`` this is applied to each level separately.
>>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd'])
>>> df.sort_index(key=lambda x: x.str.lower())
a
A 1
b 2
C 3
d 4
File: /opt/anaconda3/envs/beakerx/lib/python3.6/site-packages/pandas/core/frame.py
Type: method
sals_df.sort_index(ascending=False)
employee_id | salary | commission | |
---|---|---|---|
0 | 1 | 1500.0 | True |
1 | 2 | 2000.0 | True |
2 | 3 | 2200.0 | False |
sals_df.sort_values?
Signature:
sals_df.sort_values(
by,
axis=0,
ascending=True,
inplace=False,
kind='quicksort',
na_position='last',
ignore_index=False,
key:Union[Callable[[_ForwardRef('Series')], Union[_ForwardRef('Series'), ~AnyArrayLike]], NoneType]=None,
)
Docstring:
Sort by the values along either axis.
Parameters
----------
by : str or list of str
Name or list of names to sort by.
- if `axis` is 0 or `'index'` then `by` may contain index
levels and/or column labels.
- if `axis` is 1 or `'columns'` then `by` may contain column
levels and/or index labels.
.. versionchanged:: 0.23.0
Allow specifying index or column level names.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis to be sorted.
ascending : bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the
end.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.0.0
key : callable, optional
Apply the key function to the values
before sorting. This is similar to the `key` argument in the
builtin :meth:`sorted` function, with the notable difference that
this `key` function should be *vectorized*. It should expect a
``Series`` and return a Series with the same shape as the input.
It will be applied to each column in `by` independently.
.. versionadded:: 1.1.0
Returns
-------
DataFrame or None
DataFrame with sorted values if inplace=False, None otherwise.
See Also
--------
DataFrame.sort_index : Sort a DataFrame by the index.
Series.sort_values : Similar method for a Series.
Examples
--------
>>> df = pd.DataFrame({
... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2': [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... 'col4': ['a', 'B', 'c', 'D', 'e', 'F']
... })
>>> df
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
Sort by col1
>>> df.sort_values(by=['col1'])
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
5 C 4 3 F
4 D 7 2 e
3 NaN 8 4 D
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3 col4
1 A 1 1 B
0 A 2 0 a
2 B 9 9 c
5 C 4 3 F
4 D 7 2 e
3 NaN 8 4 D
Sort Descending
>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3 col4
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
3 NaN 8 4 D
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3 col4
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
Sorting with a key function
>>> df.sort_values(by='col4', key=lambda col: col.str.lower())
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
File: /opt/anaconda3/envs/beakerx/lib/python3.6/site-packages/pandas/core/frame.py
Type: method
sals_df.sort_values(by='employee_id', ascending=False)
employee_id | salary | commission | |
---|---|---|---|
2 | 3 | 2200.0 | False |
1 | 2 | 2000.0 | True |
0 | 1 | 1500.0 | True |
sals_df.sort_values(by='salary')
employee_id | salary | commission | |
---|---|---|---|
0 | 1 | 1500.0 | True |
1 | 2 | 2000.0 | True |
2 | 3 | 2200.0 | False |
sals_df.sort_values(by='salary', ascending=False)
employee_id | salary | commission | |
---|---|---|---|
2 | 3 | 2200.0 | False |
1 | 2 | 2000.0 | True |
0 | 1 | 1500.0 | True |
sals_ld = [
{'id': 1, 'sal': 1500.0},
{'id': 2, 'sal': 2000.0, 'comm': 10.0},
{'id': 3, 'sal': 2200.0, 'active': False},
{'id': 4, 'sal': 2000.0}
]
sals_df = pd.DataFrame(sals_ld)
sals_df.sort_values(by=['sal', 'id'])
id | sal | comm | active | |
---|---|---|---|---|
0 | 1 | 1500.0 | NaN | NaN |
1 | 2 | 2000.0 | 10.0 | NaN |
3 | 4 | 2000.0 | NaN | NaN |
2 | 3 | 2200.0 | NaN | False |
sals_df.sort_values(by=['sal', 'id'], ascending=[False, True])
id | sal | comm | active | |
---|---|---|---|---|
2 | 3 | 2200.0 | NaN | False |
1 | 2 | 2000.0 | 10.0 | NaN |
3 | 4 | 2000.0 | NaN | NaN |
0 | 1 | 1500.0 | NaN | NaN |