Joining Data Frames¶
Let us understand how to join Data Frames using Pandas.
%run 06_csv_to_pandas_data_frame.ipynb
orders
order_id | order_date | order_customer_id | order_status | |
---|---|---|---|---|
0 | 1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED |
1 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT |
2 | 3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE |
3 | 4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED |
4 | 5 | 2013-07-25 00:00:00.0 | 11318 | COMPLETE |
... | ... | ... | ... | ... |
68878 | 68879 | 2014-07-09 00:00:00.0 | 778 | COMPLETE |
68879 | 68880 | 2014-07-13 00:00:00.0 | 1117 | COMPLETE |
68880 | 68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT |
68881 | 68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD |
68882 | 68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE |
68883 rows × 4 columns
order_items
order_item_id | order_item_order_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|
0 | 1 | 1 | 957 | 1 | 299.98 | 299.98 |
1 | 2 | 2 | 1073 | 1 | 199.99 | 199.99 |
2 | 3 | 2 | 502 | 5 | 250.00 | 50.00 |
3 | 4 | 2 | 403 | 1 | 129.99 | 129.99 |
4 | 5 | 4 | 897 | 2 | 49.98 | 24.99 |
... | ... | ... | ... | ... | ... | ... |
172193 | 172194 | 68881 | 403 | 1 | 129.99 | 129.99 |
172194 | 172195 | 68882 | 365 | 1 | 59.99 | 59.99 |
172195 | 172196 | 68882 | 502 | 1 | 50.00 | 50.00 |
172196 | 172197 | 68883 | 208 | 1 | 1999.99 | 1999.99 |
172197 | 172198 | 68883 | 502 | 3 | 150.00 | 50.00 |
172198 rows × 6 columns
Join orders and order_items using orders.order_id and order_items.order_item_order_id.
orders.join?
Signature: orders.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) -> 'DataFrame'
Docstring:
Join columns of another DataFrame.
Join columns with `other` DataFrame either on index or on a key
column. Efficiently join multiple DataFrame objects by index at once by
passing a list.
Parameters
----------
other : DataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a
Series is passed, its name attribute must be set, and that will be
used as the column name in the resulting joined DataFrame.
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
how : {'left', 'right', 'outer', 'inner'}, default 'left'
How to handle the operation of the two objects.
* left: use calling frame's index (or column if on is specified)
* right: use `other`'s index.
* outer: form union of calling frame's index (or column if on is
specified) with `other`'s index, and sort it.
lexicographically.
* inner: form intersection of calling frame's index (or column if
on is specified) with `other`'s index, preserving the order
of the calling's one.
lsuffix : str, default ''
Suffix to use from left frame's overlapping columns.
rsuffix : str, default ''
Suffix to use from right frame's overlapping columns.
sort : bool, default False
Order result DataFrame lexicographically by the join key. If False,
the order of the join key depends on the join type (how keyword).
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
See Also
--------
DataFrame.merge : For column(s)-on-columns(s) operations.
Notes
-----
Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
passing a list of `DataFrame` objects.
Support for specifying index levels as the `on` parameter was added
in version 0.23.0.
Examples
--------
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
key B
0 K0 B0
1 K1 B1
2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other')
key_caller A key_other B
0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be
the index in both `df` and `other`. The joined DataFrame will have
key as its index.
>>> df.set_index('key').join(other.set_index('key'))
A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN
Another option to join using the key columns is to use the `on`
parameter. DataFrame.join always uses `other`'s index but we can use
any column in `df`. This method preserves the original DataFrame's
index in the result.
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
File: /opt/anaconda3/envs/beakerx/lib/python3.6/site-packages/pandas/core/frame.py
Type: method
orders.set_index('order_id')
order_date | order_customer_id | order_status | |
---|---|---|---|
order_id | |||
1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT |
3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED |
5 | 2013-07-25 00:00:00.0 | 11318 | COMPLETE |
... | ... | ... | ... |
68879 | 2014-07-09 00:00:00.0 | 778 | COMPLETE |
68880 | 2014-07-13 00:00:00.0 | 1117 | COMPLETE |
68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE |
68883 rows × 3 columns
order_items.set_index('order_item_order_id')
order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|
order_item_order_id | |||||
1 | 1 | 957 | 1 | 299.98 | 299.98 |
2 | 2 | 1073 | 1 | 199.99 | 199.99 |
2 | 3 | 502 | 5 | 250.00 | 50.00 |
2 | 4 | 403 | 1 | 129.99 | 129.99 |
4 | 5 | 897 | 2 | 49.98 | 24.99 |
... | ... | ... | ... | ... | ... |
68881 | 172194 | 403 | 1 | 129.99 | 129.99 |
68882 | 172195 | 365 | 1 | 59.99 | 59.99 |
68882 | 172196 | 502 | 1 | 50.00 | 50.00 |
68883 | 172197 | 208 | 1 | 1999.99 | 1999.99 |
68883 | 172198 | 502 | 3 | 150.00 | 50.00 |
172198 rows × 5 columns
# Join orders and order_items using order_id (order_item_order_id from order_items)
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'))
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1.0 | 957.0 | 1.0 | 299.98 | 299.98 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 2.0 | 1073.0 | 1.0 | 199.99 | 199.99 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 3.0 | 502.0 | 5.0 | 250.00 | 50.00 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 4.0 | 403.0 | 1.0 | 129.99 | 129.99 |
3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT | 172194.0 | 403.0 | 1.0 | 129.99 | 129.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172195.0 | 365.0 | 1.0 | 59.99 | 59.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172196.0 | 502.0 | 1.0 | 50.00 | 50.00 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197.0 | 208.0 | 1.0 | 1999.99 | 1999.99 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198.0 | 502.0 | 3.0 | 150.00 | 50.00 |
183650 rows × 8 columns
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner')
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1 | 957 | 1 | 299.98 | 299.98 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 2 | 1073 | 1 | 199.99 | 199.99 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 3 | 502 | 5 | 250.00 | 50.00 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 4 | 403 | 1 | 129.99 | 129.99 |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 5 | 897 | 2 | 49.98 | 24.99 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT | 172194 | 403 | 1 | 129.99 | 129.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172195 | 365 | 1 | 59.99 | 59.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172196 | 502 | 1 | 50.00 | 50.00 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197 | 208 | 1 | 1999.99 | 1999.99 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198 | 502 | 3 | 150.00 | 50.00 |
172198 rows × 8 columns
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
reset_index()
index | order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1 | 957 | 1 | 299.98 | 299.98 |
1 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 2 | 1073 | 1 | 199.99 | 199.99 |
2 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 3 | 502 | 5 | 250.00 | 50.00 |
3 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 4 | 403 | 1 | 129.99 | 129.99 |
4 | 4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 5 | 897 | 2 | 49.98 | 24.99 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
172193 | 68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT | 172194 | 403 | 1 | 129.99 | 129.99 |
172194 | 68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172195 | 365 | 1 | 59.99 | 59.99 |
172195 | 68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172196 | 502 | 1 | 50.00 | 50.00 |
172196 | 68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197 | 208 | 1 | 1999.99 | 1999.99 |
172197 | 68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198 | 502 | 3 | 150.00 | 50.00 |
172198 rows × 9 columns
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
reset_index(). \
rename(columns={'index': 'order_id'})
order_id | order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1 | 957 | 1 | 299.98 | 299.98 |
1 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 2 | 1073 | 1 | 199.99 | 199.99 |
2 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 3 | 502 | 5 | 250.00 | 50.00 |
3 | 2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 4 | 403 | 1 | 129.99 | 129.99 |
4 | 4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 5 | 897 | 2 | 49.98 | 24.99 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
172193 | 68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT | 172194 | 403 | 1 | 129.99 | 129.99 |
172194 | 68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172195 | 365 | 1 | 59.99 | 59.99 |
172195 | 68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172196 | 502 | 1 | 50.00 | 50.00 |
172196 | 68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197 | 208 | 1 | 1999.99 | 1999.99 |
172197 | 68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198 | 502 | 3 | 150.00 | 50.00 |
172198 rows × 9 columns
Task 1¶
Compute Daily Revenue using orders.order_date and order_items.order_item_order_subtotal considering only COMPLETE and CLOSED orders.
Here are the steps to join orders and order_items and get daily revenue.
Create Data Frames for both orders and order_items using data in files.
Filter for orders which are either in COMPLETE or CLOSED status.
Set the join index for both the Data Frames.
Join both the Data Frames using
inner
.Group the join results using order_date and get daily revenue by using
sum
on top of order_item_subtotal.
orders_considered = orders.query("order_status in ('COMPLETE', 'CLOSED')")
orders_filtered = orders[orders.order_status.isin(["COMPLETE", "CLOSED"])]
orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
groupby('order_date')['order_item_subtotal']. \
agg(['sum']). \
rename(columns={'sum': 'revenue'})
revenue | |
---|---|
order_date | |
2013-07-25 00:00:00.0 | 31547.23 |
2013-07-26 00:00:00.0 | 54713.23 |
2013-07-27 00:00:00.0 | 48411.48 |
2013-07-28 00:00:00.0 | 35672.03 |
2013-07-29 00:00:00.0 | 54579.70 |
... | ... |
2014-07-20 00:00:00.0 | 60047.45 |
2014-07-21 00:00:00.0 | 51427.70 |
2014-07-22 00:00:00.0 | 36717.24 |
2014-07-23 00:00:00.0 | 38795.23 |
2014-07-24 00:00:00.0 | 50885.19 |
364 rows × 1 columns
Task 2¶
Get all the orders for which there are no corresponding order items.
We can use default join (
left
) to get orders with out corresponding order items.
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'))
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1.0 | 957.0 | 1.0 | 299.98 | 299.98 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 2.0 | 1073.0 | 1.0 | 199.99 | 199.99 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 3.0 | 502.0 | 5.0 | 250.00 | 50.00 |
2 | 2013-07-25 00:00:00.0 | 256 | PENDING_PAYMENT | 4.0 | 403.0 | 1.0 | 129.99 | 129.99 |
3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68881 | 2014-07-19 00:00:00.0 | 2518 | PENDING_PAYMENT | 172194.0 | 403.0 | 1.0 | 129.99 | 129.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172195.0 | 365.0 | 1.0 | 59.99 | 59.99 |
68882 | 2014-07-22 00:00:00.0 | 10000 | ON_HOLD | 172196.0 | 502.0 | 1.0 | 50.00 | 50.00 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197.0 | 208.0 | 1.0 | 1999.99 | 1999.99 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198.0 | 502.0 | 3.0 | 150.00 | 50.00 |
183650 rows × 8 columns
orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id')). \
query('order_item_id.isna()')
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
6 | 2013-07-25 00:00:00.0 | 7130 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
22 | 2013-07-25 00:00:00.0 | 333 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
26 | 2013-07-25 00:00:00.0 | 7562 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
32 | 2013-07-25 00:00:00.0 | 3960 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68867 | 2014-06-23 00:00:00.0 | 869 | CANCELED | NaN | NaN | NaN | NaN | NaN |
68872 | 2014-06-29 00:00:00.0 | 3354 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68874 | 2014-07-03 00:00:00.0 | 1601 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68876 | 2014-07-06 00:00:00.0 | 4124 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68877 | 2014-07-07 00:00:00.0 | 9692 | ON_HOLD | NaN | NaN | NaN | NaN | NaN |
11452 rows × 8 columns
orders_joined = orders.set_index('order_id'). \
join(order_items.set_index('order_item_order_id'))
orders_joined[orders_joined['order_item_id'].isna()]
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
3 | 2013-07-25 00:00:00.0 | 12111 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
6 | 2013-07-25 00:00:00.0 | 7130 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
22 | 2013-07-25 00:00:00.0 | 333 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
26 | 2013-07-25 00:00:00.0 | 7562 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
32 | 2013-07-25 00:00:00.0 | 3960 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68867 | 2014-06-23 00:00:00.0 | 869 | CANCELED | NaN | NaN | NaN | NaN | NaN |
68872 | 2014-06-29 00:00:00.0 | 3354 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68874 | 2014-07-03 00:00:00.0 | 1601 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68876 | 2014-07-06 00:00:00.0 | 4124 | COMPLETE | NaN | NaN | NaN | NaN | NaN |
68877 | 2014-07-07 00:00:00.0 | 9692 | ON_HOLD | NaN | NaN | NaN | NaN | NaN |
11452 rows × 8 columns
Task 3¶
Compute Daily Product Revenue using orders.order_date as well as order_items.order_item_product_id and order_items.order_item_order_subtotal considering only COMPLETE and CLOSED orders.
orders_considered = orders.query("order_status in ('COMPLETE', 'CLOSED')")
orders_filtered = orders[orders.order_status.isin(["COMPLETE", "CLOSED"])]
orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner')
order_date | order_customer_id | order_status | order_item_id | order_item_product_id | order_item_quantity | order_item_subtotal | order_item_product_price | |
---|---|---|---|---|---|---|---|---|
1 | 2013-07-25 00:00:00.0 | 11599 | CLOSED | 1 | 957 | 1 | 299.98 | 299.98 |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 5 | 897 | 2 | 49.98 | 24.99 |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 6 | 365 | 5 | 299.95 | 59.99 |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 7 | 502 | 3 | 150.00 | 50.00 |
4 | 2013-07-25 00:00:00.0 | 8827 | CLOSED | 8 | 1014 | 4 | 199.92 | 49.98 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
68880 | 2014-07-13 00:00:00.0 | 1117 | COMPLETE | 172191 | 1073 | 1 | 199.99 | 199.99 |
68880 | 2014-07-13 00:00:00.0 | 1117 | COMPLETE | 172192 | 1014 | 5 | 249.90 | 49.98 |
68880 | 2014-07-13 00:00:00.0 | 1117 | COMPLETE | 172193 | 1014 | 3 | 149.94 | 49.98 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172197 | 208 | 1 | 1999.99 | 1999.99 |
68883 | 2014-07-23 00:00:00.0 | 5533 | COMPLETE | 172198 | 502 | 3 | 150.00 | 50.00 |
75408 rows × 8 columns
orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
groupby(['order_date', 'order_item_product_id'])['order_item_subtotal']
<pandas.core.groupby.generic.SeriesGroupBy object at 0x7f6dc89feeb8>
list(orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
groupby(['order_date', 'order_item_product_id'])['order_item_subtotal'])[:10]
[(('2013-07-25 00:00:00.0', 24),
57762 319.96
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 93),
17 74.97
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 134),
12 100.0
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 191),
12 499.95
28 399.96
28 99.99
61 399.96
71 499.95
101 99.99
57757 499.95
57764 499.95
57768 499.95
57776 99.99
57776 99.99
57779 499.95
57782 199.98
57788 199.98
57788 499.95
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 226),
68691 599.99
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 365),
4 299.95
5 299.95
15 179.97
17 239.96
18 119.98
28 59.99
37 59.99
45 59.99
57 179.97
57 119.98
61 119.98
61 119.98
71 119.98
91 299.95
57756 59.99
57757 119.98
57779 299.95
57781 299.95
57788 239.96
67416 59.99
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 403),
5 129.99
18 129.99
24 129.99
35 129.99
57 129.99
88 129.99
98 129.99
57754 129.99
57756 129.99
57757 129.99
57762 129.99
57762 129.99
57768 129.99
57788 129.99
68691 129.99
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 502),
4 150.0
12 250.0
15 50.0
24 50.0
24 250.0
51 50.0
62 50.0
67 150.0
98 100.0
57757 150.0
57758 50.0
57758 100.0
57764 150.0
67416 100.0
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 572),
72 119.97
Name: order_item_subtotal, dtype: float64),
(('2013-07-25 00:00:00.0', 625),
57764 199.99
Name: order_item_subtotal, dtype: float64)]
orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
groupby(['order_date', 'order_item_product_id'])['order_item_subtotal']. \
agg(['sum']). \
rename(columns={'sum': 'revenue'})
revenue | ||
---|---|---|
order_date | order_item_product_id | |
2013-07-25 00:00:00.0 | 24 | 319.96 |
93 | 74.97 | |
134 | 100.00 | |
191 | 5099.49 | |
226 | 599.99 | |
... | ... | ... |
2014-07-24 00:00:00.0 | 926 | 31.98 |
957 | 5399.64 | |
1004 | 10399.48 | |
1014 | 3148.74 | |
1073 | 4199.79 |
9120 rows × 1 columns
orders_considered. \
set_index('order_id'). \
join(order_items.set_index('order_item_order_id'), how='inner'). \
groupby(['order_date', 'order_item_product_id'])['order_item_subtotal']. \
agg(['sum']). \
rename(columns={'sum': 'revenue'}). \
reset_index()
order_date | order_item_product_id | revenue | |
---|---|---|---|
0 | 2013-07-25 00:00:00.0 | 24 | 319.96 |
1 | 2013-07-25 00:00:00.0 | 93 | 74.97 |
2 | 2013-07-25 00:00:00.0 | 134 | 100.00 |
3 | 2013-07-25 00:00:00.0 | 191 | 5099.49 |
4 | 2013-07-25 00:00:00.0 | 226 | 599.99 |
... | ... | ... | ... |
9115 | 2014-07-24 00:00:00.0 | 926 | 31.98 |
9116 | 2014-07-24 00:00:00.0 | 957 | 5399.64 |
9117 | 2014-07-24 00:00:00.0 | 1004 | 10399.48 |
9118 | 2014-07-24 00:00:00.0 | 1014 | 3148.74 |
9119 | 2014-07-24 00:00:00.0 | 1073 | 4199.79 |
9120 rows × 3 columns